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Current and logarithm-current distributions on a three-dimensional random- 
bond percolation cubic network were studied at the percolation threshold by 
computer simulations. Predictions of a hierarchical model that combine fractal 
structure and randomness agree with our numerical simulations. In the thermo- 
dynamic limit the logarithm-current distribution exhibits an n(ln(i))~i 1/3 
dependence below some characteristic current i c. This distribution may scale 
with In i/ln L, but the data are insufficient to make this a definite conclusion. 
Due to the small range of In L considered, a study of the moments does not 
reveal this behavior and a study of the distribution itself is required. 
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1. I N T R O D U C T I O N  

T h e  cr i t ical  b e h a v i o r  of  self-s imilar  res i s tor  n e t w o r k s  is cha r ac t e r i z ed  by an 

infini te  set of  exponen t s .  (1-5i S t a n d a r d  e x p o n e n t s  such  as the  f rac ta l  d imen-  

sion,  the  res i s tance  e x p o n e n t ,  a n d  the  c o r r e l a t i o n  l eng th  e x p o n e n t  in per-  

c o l a t i o n  are  m e m b e r s  o f  this set. T h e  t e rm mult i fractal  has  been  c o i n e d  to 

desc r ibe  a phys ica l  o r  g e o m e t r i c  ob jec t  tha t  r equ i res  such an infini te  set of  

i n d e p e n d e n t  e x p o n e n t s  to cha rac t e r i ze  its p roper t ies .  In  the  c o n t e x t  of  

res i s tor  n e t w o r k s  the  mu l t i f r ac t a l  c h a r a c t e r  has  been  re la ted  to  the  

a s y m p t o t i c  shape  of  the  cu r r en t  d i s t r ibu t ion .  (3) M o r e  precisely,  each  

m o m e n t  o f  the  cu r r en t  d i s t r i bu t i on  is cha r ac t e r i z ed  by a different  exponen t .  
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A comprehensive study of the properties of this set of exponents was 
presented by Blumenfeld et al. (5) Consider a two-terminal measurement on 
an arbitrary fixed cluster in which a unit current ! is injected at a source 
site x and removed at a sink site x'. This imposed current will give rise to 
a distribution of currents in bonds covering a region associated with x and 
x'. A simple way of characterizing this distribution involves its moments, (3) 

Mq(x, x') -- ~ [Ib[ q (1.1) 
b 

where we sum over all bonds b which carry a nonzero current Ib. This 
current implicitly depends on x and x'. 

Critical exponents can be defined in association with each moment via 

M q = [ V ( x , x ' ) M q ( x , x ' ) ] a v / [ V ( X , X ' ) ] a v ~ l X - x ' l  xq , 1 <  I x - x ' l  ~ r  

(1.2) 

where ~ is the percolation correlation length, and v(x, x') is the indicator 
function for percolation: i.e., it is one if sites x and x' are in the same 
cluster and zero otherwise; [-.]av indicates an average over all configura- 
tions of occupied and unoccupied bonds and (1'5'6) Xq = Oq/V. Note that our 
symbol Xq differs in sign from the one used in ref. 1, i.e., our X2q is the same 
as -Xq of that reference. Then we can study the moments of the current 
distribution as a function of the linear dimension R--  I x -  x't that we can 
write as AqR xq. If instead of a unit current we apply a unit voltage, the 
corresponding moments scale as 

M q = A q R  xq (1.3) 

t t with Xq=X u -  qx2 and by definition the amplitudes Aq and Aq a r e  inde- 
pendent of R and they are in general a smooth function of q. 

The ratio b = xl /x  2 for percolating systems in three dimensions (d=  3) 
is known from recent numerical simulations on continuum systems com- 
posed of intersecting spheres (v) [x = v ( d -  b) = 1.57 + 0.08] and on random 
resistor networks (8) (~c = 1.47 -t- 0.04, b = 1.35 _ 0.04). Series expansions (5) 
and e-expansion (6) results also exist, as well as exact bounds o n  b(9'1~ 

1.21+ 0.06 ~< b ~<1.30 _+ 0.13. The positive moments of the logarithm- 
current distribution, on a class of hierarchical structures that combine 
randomness of the structure with features of the exact fractal, were shown 
to scale as function of the linear dimension of the system (11) 

mq = 2 lnq Ib = Bq R~ ln~(q)R (1.4) 
b 

where NAB----R ~ is the number of bonds on the backbone connecting x 
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and x' and De is the backbone dimension. The ratio mq/NBB is thus a 
function of R, (11) 

J/tq = mq = Bq lnr (1.5) 
NBB 

where, for the above mentioned hierarchical structures, 

fl(q) = cq (1.6) 

and where, by definition, the amplitude Bq is independent of R but could 
be a function of q. Based on those studies, c is predicted to be one, in any 
dimension. For  negative values of q, these asymptotic scaling forms may 
have to be corrected for finite size effects when - q  > In R. Consequently, 
in our analysis of the negative moments we assumed the modified scaling 
forms.( ~ 

m _ q  = R DB+ 6 ln-C'qR (1.7) 

m _q - ~ .  R6 ln_C,qR 
~/t q = NBB (1.8) 

where c' may differ from c of (1.6), and where the exponent 6 was some- 
times allowed to be nonzero. All of these scaling forms are believed to 
remain unchanged if, instead of applying a unit potential difference, we 
apply a unit current to the system. 

While the scaling predictions of the moments of the current distribu- 
tion are satisfied for large, positive values of q, they fail for sufficiently large 
negative q values, where the dominant small currents decrease exponen- 
tially with size. There are indications (12) that for these small currents the 
roundoff errors of numerical simulations are important and could strongly 
affect the results. The roundoff error effect is also important when we 
calculate the positive moments of the logarithm-current distributions, since 
the small currents then play a dominant role, too. 

The transfer matrix method of ref. 12 seems to be especially suited for 
a careful study of these distributions. The main objective of this paper is to 
present a clear discussion of the method we applied to study the logarithm- 
current distribution. Special attention was given to the roundoff error 
problem and to a discussion of finite-size scaring properties. 

It was found that the distribution of currents in a random resistor 
network is not a scaling function of a variable like (i/Ra). (1"3'5'13"14) Later 
it was claimed that this distribution tends to a log-normal form for very 
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large systems. (3) This was also shown to be incorrect by simulations of two- 
dimensional networks. (15) As was concluded in that reference, we too find 
that the function n(ln(i)) has a very simple asymptotic form for small i. We 
find that 

n(ln(i)) ~ i v(c) (1.9) 

for i <  ic, where i c is a characteristic upper cutoff, L is the linear size of the 
network and 7(L) is an L-dependent exponent. For example, when L = 18, 
the logarithm of this distribution in In(in(i))]  increases linearly with ln(i) 
over about five orders of magnitude of i, limited only by roundoff errors. 

2. THE N E T W O R K  M O D E L  A N D  ITS 
N U M E R I C A L  S I M U L A T I O N  

The random-resistor bond percolating cubic network consists of a 
number N ( = L + 1 ) of x - y  planes connected through bonds oriented along 
the z direction (see Fig. la). Each plane contains L 2 sites that can be either 
connected to the faces A and B and disconnected from the faces C and D, 
or connected to C and D and disconnected from A and B. The sites are 
never simultaneously connected to all faces A, B, C, and D. When all bonds 
are present, their total number is 2L(L  + 1)2 + L 3. In its randomly diluted 
version, this type of network allows us to obtain the current distribution 
when a potential difference is applied either along the y direction, between 
faces A and B, or along the x direction, between faces C and D. 

A cluster of bonds that connect faces A and B is a percolating cluster 
in the y direction, while a cluster that connects faces C and D is a 
percolating cluster in the x direction. Only those networks that percolate 
in both directions were considered. The reasons for this, as well as the 
somewhat odd form of the networks that we used, have to do with the 
original purpose for which these networks were simulated, namely, a study 
of the Hall effect at the percolation threshold. The present study uses the 
same data that was generated in those simulations. That study was 
described elsewhere, (12) along with a detailed description of the modified 
transfer-matrix method which we developed for calculating the voltages on 
all bonds of the network. Here we only give a brief summary of that 
method. 

A potential difference of 1 was applied between a pair of parallel faces. 
Note that this is different from the conditions assumed to obtain Eq. (1.5): 
In that case the potential difference was applied between a pair of points 
at x and x'. We assume that Eq. (1.5) continues to hold for our case, too. 
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Fig. 1. (a) A single x, y layer of the network model used in the simulations with L = 3. We 
observe the L2=9 sites, as well as the L(L+ 1)= 12 unit cells in the x and in y directions. 
Here A and B are the pair of faces between which a potential difference is being applied, while 
at the other pair of faces C, D a.zero-current boundary condition is imposed. When the faces 
A and B were connected, the faces C and D were disconnected, and vice versa. (b) 2D strip 
network split up at the nth layer into left and right subnetworks on which we describe the 
transfer matrix method explained in the text. See ref. 12 for further details. 

E a c h  b o n d  of  the  n e t w o r k  has  an  O h m i c  c o n d u c t i v i t y  0 =  1 wi th  

p r o b a b i l i t y  Pc,  a n d  ~r = 0 wi th  p r o b a b i l i t y  ( 1 -  Pc), where  the  p e r c o l a t i o n  

t h r e s h o l d  va lue  Pc was  t a k e n  to  d e p e n d  on  the  l inear  size L a c c o r d i n g  to (16) 

pc(L) = - 0 . 2 4 9 2  + O.071L 1/o.88 + 1.25L-2/o.88 (2.1) 

T h e  m e t h o d  of  ref. 13 was  app l i ed  to o b t a i n  the  cu r ren t s  in all  b o n d s  

of  the  ne twork .  In  this m e t h o d  an  a d m i t t a n c e  m a t r i x  A~  is c o n s t r u c t e d  for  
L each  x ~  sec t ion  of  the  n e t w o r k  (see Fig.  l b ) ,  s t a r t ing  f r o m  A U = 0  at  the  

R is c o n s t r u c t e d  for  the  s a m e  z = 0 p l a n e / n )  A n o t h e r  a d m i t t a n c e  m a t r i x  A,j 

sect ion,  s t a r t ing  f r o m  A ~ - - 0  at the  z = N plane.  F o r  a g iven  sec t ion  at  

z = z0, the  A L m a t r i x  cha rac t e r i zes  the  r e sponse  of  the  n e t w o r k  to  the left 

822/60/3-4-6 
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of z 0 by relating the currents I~ to the voltages Vj externally applied at each 
site of the section 

I,= Z A~ V j (2.2) 
J 

The other matrix A R similarly characterizes the response of the network to 
the right of Zo, 

I / =  Z A~ Vj (2.3) 
J 

The two sets of equations are combined into one set of equations for Vj by 
noting that in the combined network we must have Vj = V] at all sites and 
Ii + I , '=  0 at all internal sites, while I~ +/,.' = Iext for the sites representing 
the external connections. 

3. COLLECTING THE RELEVANT I N F O R M A T I O N  

During the analysis of the logarithm-current distribution it is very 
important to carefully eliminate roundoff errors, since the smallest currents 
i give the largest values of ln(i). 

As can be seen from Figs. 2a and 2b for L = 18, for large values of L 
( L >  10) some very small currents appear that cannot be distinguished 
from those spurious currents that appear as a result of roundoff error, in 
bonds where the current should vanish (e.g., in dangling clusters). 
Figure 2b is particularly instructive in this respect. 

It was therefore very important to carefully select an L-dependent 
value of the minimum current that can be considered as a true current 
rather than a roundoff error. This value, which we denote by e, dan only 
be determined after the collection of some data, by considering a plot such 
as Fig. 2b. We therefore proceeded as follows: We first selected two 
particular values imin and imax (we will see later how to choose them) such 
that imi~ ~ e and /max > max(ere), with max(ere) as the estimated maximum 
effective conductivity possible in any system of linear dimension L. Poten- 
tial differences VAB = VCD = 1 were chosen as boundary conditions. Since 
the current in any bond falls between imin and i . . . .  this interval was 
divided into N equally spaced bins (N=2000)  in which we simply 
accumulated bond numbers. In this way we could store the approximate 
current distribution of ~/" systems of linear dimension L in just one vector 
of length N. 
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The values of imin and imax were  chosen from the analysis of 
preliminary results. In order to collect these results, we need some estimate 
of imin and imam' From the analysis of the data of ref. 12 we know that imin 
will be close to but greater than 10 -12, while /max ~< 1. We therefore chose 
imin = 10-12 and /max = 1 for storing the preliminary results. From these 
data, better values imin and imax were  obtained, which were then similarly 
used in accumulating the rest of the data. Figure 2c exhibits an implemen- 
tation of this for a special case. 

In later calculations the Hoshen-Kopelman algorithm (18~ used in these 
simulations to eliminate finite clusters was replaced by the burning 
method, (19) which eliminates also all the dangling clusters. The implementa- 
tion of burning, before applying the transfer matrix method to calculate the 
current distributions, eliminated the spurious currents which appeared 
when the Hoshen-Kopelman algorithm was used. This shows that those 
currents were indeed unphysical currents which appeared in the dangling 
ends. 

In a similar fashion we saved the logarithm-current distribution in 
N =  2000 bins equally spaced between ln(imin) and ln(imax). Figures 2a and 
2b exhibit an implementation of this for a special case. 

This procedure for data storage using N bins ( N =  2000) means that 
we stored the distribution function to only three significant digits. This was 
accurate enough to obtain the moments of the distribution. As we have 
smooth distributions, it turns out that the results are even better that what 
might have been expected. 

Obviously we could also obtain the current distribution from the 
logarithm-current distribution and this was done to check how sensitive 
our results are to the method of data storage (or size of the bins). This and 
other checks showed that the error originating from our finite resolution or 
finite bin size is smaller than the random statistical errors and can be 
neglected. 

As we pointed out previously, the distribution moments were obtained 
after the collection of all the data in order to avoid the roundoff error 
effects. However, in order to calculate the statistical errors, we need to 
know these moments for indificual samples. Since the currents from dif- 
ferent samples with the same L were stored in a single array of bins, this 
information was not available during the analysis of the corrected distribu- 
tions. To obtain an estimate of the statistical errors, the moments of the 
distributions were evaluated for each sample during the collection of the 
data, before the distribution could be corrected for roundoff errors. Then 
their mean values and statistical errors were calculated. At the lower values 
of L, where the roundoff errors were small, those initially calculated mean 
values were in good agreement with the final values. This agreement 
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Fig. 2. (a) Logarithm-current distribution n(ln(i)) versus the bin number n b =kln(i/imax) 
with k=2OOO/ln(im~n/im~,), imi~=10 -1~ and imax=0.09, for L =  18. (b) Logarithm of the 
logarithm-current distribution ln[n( ln( i ) ) ]  versus the bin number nb for L =  18 and the same 
nb definition as in (a). (c) Current distribution n(i) versus the bin number n b = k i  with 
k = 2000/ima x with /max = 0.09 for L =  18 and imax = 0.17 for L =  10. 

deteriorates at the larger L values. We can infer from this that at the lower 
L values the calculated statistical errors are also substantially without 
roundoff error effects. For larger L values the calculated statistical error 
increases, but this is probably due mostly to the increase in the roundoff 
error effect. At the largest values of L (L >/16) the uncorrected errors we 
estimated were very large. We quote the corrected mean values without 
being able to estimate the errors, other than to say that those should be 
quite small (see Figs. 4a and 4b below). 
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4. CHOICE OF A LINEAR SIZE 

In the literature the assignment of the characteristic linear dimension 
of the system is not unique. Different authors chose different ways to define 
the characteristic linear dimension and this has led to different values for 
the same exponents and to difficulties in comparing values of exponents 
obtained in different calculations. Jerauld e t  aL (2~ chose the cube root of 
the number of sites in the network, Herrmann e t  al. (19) chose the edge 
length, and Derrida e t  al. ~21~ chose the linear dimension so that a 
homogeneous network (p = 1) would have the same conductivity as a cube 
of edge length L. For  the present case it could he argued that the moments 
should be studied as a function of the distance between parallel faces A and 
B or C and D (L + 1 in bond units) (see Section 3). 

It could be also argued that we should use 

cross-sectional area 
L =  (4.1) 

distance between opposite faces 

o r  

~o = (volume)l/3 (4.2) 

As L goes to infinity, the results should be independent of the 
particular definition used for the linear dimension of the system, but for the 
range of L values 7 ~< L ~< 24 that we considered, the results could depend 
on this definition. Special attention is given to this question when it arises. 
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5. RESULTS OF CURRENT AND LOGARITHM-CURRENT 
DISTRIBUTIONS 

In  Fig. 2b we exhibi t  the l o g a r i t h m - c u r r e n t  d i s t r i b u t i o n  n ( l n ( i ) )  as a 

func t ion  of the b in  n u m b e r  nb=kln(i / imax) with  k=2OOO/ln(imin/imax), 
i m i n = 1 0  -1~ a n d  imax=0.09,  for L = 1 8 .  Three  regions  can  clearly be 
d i s t ingu i shed  in  this g raph:  a reg ion  wi th  n b > 1500 where  m a i n l y  r o u n d o f f  
errors  are  observed ,  a n a r r o w  reg ion  of re la t ively h igh cur rents ,  a n d  a 

wider  reg ion  of smal l  cur ren t s  in  which  the l o g a r i t h m  of n ( l n ( i ) )  varies 
l inear ly  as a f unc t i on  of k ln(i/imax) over  five decades of i. F o r  1 0 - 8 < i <  
4 -  10 -3  a n d  L = 18 we o b t a i n  

n ( ln ( i  ), L = 18) = i ~176 o.o2 (5.1) 

1.00 

0 . 7 5  

~...~ 0 50 

0 . 2 5  

0 O0  [ 
ooo o ;~  o.o4' o;~ o;~ O/lO o't~ o.1. oI~ 

1/L 

1.50  

i 

o~5 1 (b) 
0 . 5 0  51 I i 

O, . 10. 15. 2 ;  2 ;  
L 

Fig. 3. (a) 7(L) versus 1/L. ((3) Values obtained from n(ln(i)). (~ )  Values obtained from 
n(i). The lines show least-square fits with 7(L)=m/L+7~ and ,/0o(�9 and 
7o~( [::3)= 0.34 + 0.03. (b) Plot of ~/x, with x = L ~ versus L for 7 obtained from the logarithm- 
current distributions (single line), with x = L ~ 43, for 7 obtained from the current distributions 
(double line), with x=0.75 ln(L), for 7 obtained from the logarithm-current distributions 
(long-dash line), and, with x=0.75 ln(L), versus L for ? obtained from the current distribu- 
tions (short-dash line). 
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Similar graphs for different L values were obtained and we found that in 
this region we can write (see Fig. 3a) 

n(ln(i), L) = i 7{L) (5.2) 

where y is L dependent. For  L ~ oo we find 7 --* 0.33 + 0.06. 
In the region of small currents we can use Eq. (5.2) to obtain the 

current distribution n(i) from the logarithm-current distribution n(ln(i)) 

d(ln(i~ 
n(i) = n(ln(i)) ' ~  ~ i 7(L)-1 (5.3) 

di 

From this we expect that ln(n(i)) should be linear in In(i) with a slope 
7 - 1. This is in fact observed in Fig. 2c for the cases L = 10 and L = 18. We 
can obtain y ( L ) - 1  as the slope of ln(n(i)) versus ln(i). Then we plot v(L) 
obtained in this way as a function of 1/L and by least squares fit obtain 
7o0 =0.34_+0.03 (see Fig. 3a). This is in agreement with the asymptotic 
value obtained by least squares fit from the logarithm-current distribution, 
namely y~ =0.32_+ 0.02 (see Fig. 3a). We think that these error bars are 
too small. By visual inspection we conclude that y~ =0.33_+0.06. From 
these plots it appears, however, that 7(L) is not linear in L. In order 
to study the possibility that the logarithm-current distribution scales 
with In i/lnL as found in ref. 11, we plot in Fig. 3b both 7 ( L ) - L  ~ and 
7(L)- ln(L)  versus L, and find that they are both approximately constant. 
This indicates that we are considering a range of L values that is too 
narrow to differentiate between L scaling and In L scaling, but that our 
results are not inconsistent with the latter. 

Now we turn to a discussion of the moments. To obtain the exponents 
xq and/?(q)  of the moments  of the current and logarithm-current distribu- 
tions of Eqs. (1.3) and (1.5), we study the moments of the current and the 
logarithm-current distributions as a function of L and as a function of ~ .  
We find that even though the values of x o, ]3 in finite samples do depend 
somewhat on whether L or Lf is used, their limits as L --, oo or LP ~ ~ are 
identical. 

F rom Eq.(1.5) we get 

ln(~q)  = ln(Bq) + fi(q) In[ In(L)]  (5.4) 

Here we have identified the point-to-point terminal distance R = I x -  x'[ of 
Section 1 with the linear dimension L of Section 4. 

The moments  of the logarithm-current distribution divided by the 
number of bonds on the backbone Jgq and the corresponding statistical 
errors for an applied potential difference between faces A and B are 



374 Duering and Bergman 

8_) I0 8 

7 ,o Z Y 
_ . - - J  j 

106 f 

105 

l O  [ - -  

[ I [ I i { I I 
8 ,o ,2 ,4 I~ ,8 24 

(b) ,o~ 

I0 (b) 
I I I I I I T I 

8 I0 12 14 16 IB 24 

L 
Fig. 4. (a) Positive moments of the logarithm-current distribution divided by the number of 
bonds on the backbone J/q versus In[In(L)],  for an applied potential difference between faces 
A and B. The numbers from 1 to 8 indicate the value of q. The straight-line fits of these 
moments by a least-squares algorithm are also shown. Error are not shown; see the text for 
a discussion of the errors. (b) Negative moments of the logarithm-current distribution divided 
by the number of bonds on the backbone Jf_q versus In[In(L)] for an applied potential dif- 
ference between planes A and B .  Numbers from 1 to 9 indicate the value of q. The statistical 
error at each point was smaller than the symbol used. The straight-line fits of these moments 
by a least-squares algorithm are also shown. (c) Plot of ln(Bq) ( �9  and f l(q) ( + ) versus q for 
- 9 ~ q ~ 8 ,  as obtained from parts (a) and (b); see Eq. (1.5). 
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Fig. 4. (Continued) 

exhibited as a function of ln(L) on a logarithmic scale in Fig. 4. A similar 
figure was obtained for an applied potential difference between face C and 
D. The positive moments are exhibited in Fig. 4a and the negative moments 
in Fig. 4b. The straight line fits of these moments to Eq. (5.4), using a least- 
squares algorithm, provide values for the amplitude Bq and the exponent 
f l(q).  These lines are also shown in Figs. 4a and 4b. The estimated error 
bars were smaller than the symbols used. In Fig. 4c the values of f l (q)  are 
exhibited versus q. A straight line of slope c = 1.00 4-_ 0.02 gives a good fit 
at the positive values of q and some of the negative values. This is in 
agreement with results from hierarchical structures. (u) 

The values of In Bq a r e  also exhibited in Fig. 4c. We find that these 
points can be fitted by 

while 

l n ( B q ) ~ q  1~ for q ~ > - 3  (5.5) 

ln(Bq)~ Iql ~ for q~< - 3  (5.6) 

but this is clearly not the only possibility. In particular, it is possible to 
represent Bq by a simple exponential function B e ~-. e q. Using this form, we 
get 

J/4"q ~ eq(ln L )  cq ~ ( log  l.44 L ) cq (5.7) 
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The moments of the logarithm-current distribution divided by the 
number of bonds on the backbone were also considered as a function of 5~. 
Plots similar to Fig. 4 were obtained, but the numerical values of the slopes 
and amplitudes were somewhat different. We do not show these results 
here. 

The fact that the results depend on the choice of the linear size 
considered (L or ~ )  is a finite-size effect. We are mainly interested in the 
asymptotic limit as L---, o% and in this case both calculations should 
converge to the same value. We therefore studied the local slope of Figs. 4a 
and 4b as a function of L. To minimize the effect of the large statistical 
error, we obtained the local slope from a least-squares fit of four 
consecutive points in Fig. 4 and its equivalent. The sum of the four L 
values that contribute to each point is denoted by n. Thus, for the first 
point, n = 7 + 8 + 10 + 12 = 37 (see Fig. 5). 

In or ed~rr to check the effect of replacing L by 5O as the linear size, we 
plot in Fig. 5 the local slope of the first moment  of the logarithm-current 
distribution as a function of l/n for both choices. In both limits L ~ oe and 
5f-- ,  o% we obtain by visual inspection/3(1) = 1.2 + 0.1. A least squares fit 
gives 1.20 +_ 0.05 in both cases, in agreement with out previous value, but 
with error bars that we think are too small. Evidently, using 5 ~ instead of 
L, we get different results at each finite value of S or L, but the same value 
of/3(1) in the limit of infinite size (see Fig. 5). In contrast with this, the 
value of/3(1 ) we obtained from Fig. 4 was 1.00 _+ 0.02 when we used L and 
1.08 + 0.02 when we used 5O. The extrapolation procedure to infinite size 

1.3  

1 2  

1.1 

H 
v 

0 . 9  

0 . 8  I I I 
0 O 0  0 . 0 1  0 . 0 2  0 . 0 3  

1 / n  

Fig. 5. Local slope of the first moment  of the logarithm-current distribution/~(q = 1) versus 
1/n when L ([~) and ~ ( x ) are the considered linear dimensions; see Eq. (1.5). Least squares 
fits are also shown. 
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Fig. 6. Value of/~(q) as a function of q in the thermodynamic limit; see Eq. (1.5). 

thus increases the value found for/?(1),  and also renders it independent of 
the type of  linear dimension used (L or f ) .  

The exponents /~(q) of the other positive and negative moments  with 
their error were obtained by the same method of extrapolation (see Fig. 6). 
We then fitted the function /~(q) to the form cq with the result 
c=1 .12_+0 .03 ,  When we restricted the fit to positive q we found c =  
1.06 + 0.10. 

The hierarchical models predict c =  1 for q > 0 ,  which is inside the 

Fig. 7. 

- - 0  3 - -  

- - 0  2 - -  

- - 0 . 1  - -  

O 0  I / I I I i ~ - - I  
0 1 2 3 4 5 6 7 8 

q 

Value of 6(-q)  as a function of q in the thermodynamic limit; see Eq. (1.8). 
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error bars for the second value, but outside the error bars for the first 
values. 

The value c = 1.12 _+ 0.03 obtained in the asymptotic limit is within the 
error bars of the value 1.06 _+ 0.10 previously obtained, but it is larger than 
the hierarchical model predictions. This is mainly due to the values 
obtained for the negative moments,  which have relatively small statistical 
errors. We also note that this value is obtained from the negative moments  
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0 2 4- 6 8 

q 

Fig. 8. (a) Posit ive m o m e n t s  of the current distribution Mq v e r s u s  L on a logarithmic scale. 
The numbers  from 1 to 8 indicate the value of  q. The straight-line fits of  these m o m e n t s  by 
a least-squares a lgori thm are also shown.  (b) Plot  of  ln(A'q) and x'q versus q; see Eq. (1.3). 
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by assuming  6 = 0  in Eq. (1.8). This is done  because  our  da t a  are not  good  
enough  to s imul taneous ly  ob ta in  bo th  c and  6. However ,  we could  fix c to 
the hierarchical  mode l  p red ic t ion  (c = 1) and  look  for 6. To that  end, we 
p lo t  

~ q/ln-qL = L ~ (5.8) 

as a funct ion of L on a logar i thmic  scale. This yields 6 ( - q ) ,  which turns 
out  to be L dependent .  A local  s lope s tudy similar  to the one descr ibed 
before yields the a sympto t i c  value of 6 ( - q )  when L ~ oo. These values are 
exhib i ted  in Fig. 7 as a funct ion of q. We  find tha t  for for c = 1, 6 ( - q )  
depends  on q and  tha t  for 1 < - q < 7  it lies between zero and  
1/v--Db = --0.6 as expected.  (11) 

We should  emphas ize  that  the value of c are ob ta ined  under  the 
a s sumpt ion  tha t  Eqs. (1.5) and  (1.8) hold. Due  to the small  range of L 
values cons idered  and  to the relat ively large e r ror  bars,  we canno t  
dis t inguish between scaling as a funct ion of In L and  scaling as funct ion of 
L. Tha t  is, if we assumed d/lq ~ L cq, c = 0.42 + 0.003 would  be obta ined.  

In  a s imilar  way  we s tudied the momen t s  of the current  d is t r ibut ions .  
The  momen t s  Mq of the current  d i s t r ibu t ions  and  the cor respond ing  
stat is t ical  e r ror  are shown as a funct ion of L in Fig. 8a on a logar i thmic  
scale. The  s t ra ight- l ine  fits of  these momen t s  by a leas t -squares  a lgor i thm 
provide  the ampl i tude  A'q and the exponent  x'q of Eq. (1.3) a long with er ror  
bars. These results are shown in Fig. 8b. The  value of ln(A'q) appears  to be 
near ly  independen t  (22) of q. S imula t ions  at  larger  L's  should  be done  to 
conf i rm this behavior .  

The  momen t s  of the current  d is t r ibut ions  were also p lo t ted  versus ~ ,  
and  s t ra ight  lines fitted. Plots  s imilar  to Fig. 8 were obta ined ,  but  the 
numer ica l  values of the slope and  ampl i tude  were sl ightly different. To save 
space, we omi t  those figures here. 

Table I. Exponents of the Moments  of the Current Distributions 

q X'q Xq ~1 q Prediction (5) 

1 -0.03 + 0.02 1.26 + 0.03 1.12 _+ 0.03 
2 - 1.29 _+ 0.02 1.29 _ 0.04 1.14 _+ 0.04 1.12 + 0.02 
3 -2.55 _ 0.04 1.32 _+_+ 0.07 1.17 _+ 0.07 
4 -3.80 _+ 0.07 1.36 _ 0.10 1.20 _+ 0.10 1.05 _+ 0.03 
5 - 5.10 ___ 0.06 1.35 __+ 0.10 1.20 + 0.10 
6 - 6.50 _+ 0.05 1.24 __+ 0.13 1.09 _+ 0.13 1.02 +_ 0.03 
7 - 7.6 __+ 0.1 1.40 + 0.20 1.27 __ 0.20 
8 - 8.9 _+ 0.1 1.40 __+ 0.20 1.26 _+ 0.20 1.01 + 0.03 
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These slopes were analyzed as in the case of the logarithm-current 
distribution and the results are shown in Table I. We include in this table 

t t t the values of Xq, Xq = X q -  qx2, I/Iq = VXq (with (23) v = 0.89 _ 0.01) and the 
predictions of ref. 5. The values of I//q we obtained are in agreement with 
those predictions. The value of b = ~4 = 1.36 + 0.10 is also in agreement 
with known bounds (9) and previous simulation results. (7's) 

6. C O N C L U S I O N S  

We have shown that below some critical current, the logarithm- 
current distribution in three-dimensional random-resistor networks at the 
percolation threshold increases as i r with an asymptotic value 7 =  
0.33 ___ 0.06 when L--+ oe. A further study of the L dependence of 7 shows 
that the logarithm-current distribution may scale with l n ( i ) / l n (L ) .  These 
new results regarding power law i v do not follow in any simple way from 
the behavior of the moments  of either In i or i, which were investigated in 
the past. They were discovered only as a result of a study of the actual 
distribution function. 

We found that a careful consideration of the roundoff errors is very 
important  in the study of the logarithm-current distribution. We were able 
to study this distribution by applying a modified transfer matrix method 
for simulating random resistor networks and properly eliminating the 
spurious currents which appeared in the dangling ends. We find that c is 
probably between 1 and 1.15, and that 6 may be a function of q. These 
calculations show that the hierarchical model result is close to the true 
value. Simulations done on the backbone only, by first eliminating the 
dangling clusters, are necessary to further check the hierarchical model 
predictions. 
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